Cannabis Is Medicine . . . Test It like Medicine

August 21, 2019
Volume: 
2
Issue: 
4
Figure 1: A hypothetical manufacturing process for making aspirin tablets.
Figure 1 (click to enlarge): A hypothetical manufacturing process for making aspirin tablets. To follow the pharmaceutical testing paradigm, tests must be performed on the raw materials, after each manufacturing step, and at the final product stage.
Abstract / Synopsis: 

The purpose of this column is to make the case that cannabis is medicine, and thus the testing paradigm in use by the pharmaceutical industry needs to be adopted by the cannabis industry. I will introduce the pharmaceutical industry testing paradigm, contrast it with how things are currently done in the cannabis industry, and discuss the changes that need to be adopted in our industry to make the transition to what I believe is the correct testing paradigm.

There, I finally said it in the title of a column, “Cannabis is Medicine . . . Test it Like Medicine.” As I have stated in a previous column (1), I seriously considered making this the name of my column. I ultimately chose “Cannabis Analysis” because it is a broader topic, and I like that the words in the title rhyme.

As stated above, the purpose of this column is to make the case that cannabis is medicine, thus the testing paradigm in use by the pharmaceutical industry needs to be adopted by the cannabis industry. Here, I will introduce the pharmaceutical industry testing paradigm, contrast it with how things are currently done in the cannabis industry, and discuss the changes that need to be adopted in our industry to make the transition to what I believe is the correct testing paradigm.

The Pharmaceutical Industry Testing Paradigm

The pharmaceutical industry in the United States is regulated by the U.S. Food and Drug Administration (FDA). All prescription drugs must undergo rigorous chemical testing and clinical trials before being approved for use in humans. The FDA’s mission can be summarized in the phrase that all medicines need to be “safe and effective.” To achieve this, drug companies perform what I call “cradle-to-grave” testing. That is, they test every raw material that goes into a medicine, they test after each manufacturing step, and they test the final product before it goes out the door.

Figure 1 gives an idea of how this works. (See upper right for Figure 1, click to enlarge.) Imagine you work at a factory that makes aspirin tablets. All the ingredients for the tablets, including the active pharmaceutical ingredient (API), acetylsalicylic acid, and the excipients come in at the loading dock in barrels. To follow the pharmaceutical testing paradigm, representative samples of each material are collected (more on representative sampling here [2,3]) and then checked for identity and purity.

Assuming all the raw materials pass muster, they must next be mixed together in a blender as seen in Figure 1.

The material in the blender must be sampled and tested over time to see how well mixed it is. The blending must continue until the material is thoroughly mixed. The mixed material is then pressed into a tablet with a tableting press. The tablets must be sampled and tested to see if the right amount of API and excipients are present in the tablets. Lastly, representative samples of final tablet product are tested before a batch of aspirin bottles can go out the door. All tests are performed according to a standard operating procedure (SOP). No material can proceed onto the next step unless it meets a predetermined set of stringent criteria.

This level of testing is required by FDA regulations. However, it also makes good economic sense to perform cradle-to-grave testing. By testing each material before and after each manufacturing step, the manufacturing process can be controlled so that product can be made safely and reproducibly. Testing data can also be used to optimize manufacturing steps by maximizing output while minimizing costs. Lastly, by making safe and effective medicines the potential for causing damage to your customers with concomitant bad publicity, loss of business, and lawsuits will be avoided. Given these facts, a strict cradle-to-grave testing regimen makes sense even in the absence of federal regulations. Please note that all this testing is done in-house by the pharmaceutical company.

Cannabis is Medicine...

The FDA has finally acknowledged that the cannabinoid cannabidiol (CBD) has medicinal uses. Specifically, it is recommended to treat some types of epilepsy (4). Subsequently, CBD now appears to be everywhere. All manner of CBD concoctions are now available on the internet. Retail drug store chains are selling it nationwide (5), and there is even a hamburger chain adding CBD to their burgers (6).

References: 
  1. B.C. Smith, Cannabis Science and Technology 2(3), 10–14 (2019).
  2. B.C. Smith, Cannabis Science and Technology 2(1), 14–19 (2019).
  3. P. Atkins, Cannabis Science and Technology 2(2), 26–34 (2019).
  4. https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-comprised-active-ingredient-derived-marijuana-treat-rare-severe-forms.
  5. https://www.cnbc.com/2019/03/27/walgreens-to-sell-cbd-products-in-some-stores.html.
  6. https://www.washingtonpost.com/news/voraciously/wp/2019/04/17/carls-jr-is-rolling-out-a-cbd-burger-but-dont-get-your-hopes-too-high/?noredirect=on&utm_term=.4920aef53386.
  7. https://mjbizdaily.com/nearly-a-fifth-of-california-marijuana-products-failing-testing-standards/.

About the Columnist

Brian C. Smith, PhD, is Founder, CEO and Chief Technical Officer of Big Sur Scientific in Capitola, California. Dr. Smith has more than 40 years of experience as an industrial analytical chemist having worked for such commpanies as Xeros, IBM, Waters Associates, and Princeton Instruments. For 20 years he ran Spectros Associates, an analytical chemistry training and consulting firm where he improved their chemical analyses. Dr. Smith has written three books on infrared spectroscopy, and earned a PhD in physical chemistry from Dartmouth College.

How to Cite This Article

B.C. Smith, Cannabis Science and Technology 2(4), 12–14 (2019).